Septiembre, 2024
Descubierto un proceso ultrararo en el Laboratorio Europeo de Física de Partículas que podría desvelar una nueva física, nos informa el periodista Enrique Sacristán. El modelo estándar de física de partículas predecía que un determinado fenómeno podía ocurrir unas 8 veces cada 100.000 millones, y la colaboración NA62 ha logrado observarlo por primera vez: la desintegración de una partícula llamada kaón en otra denominada pión, ambas con carga positiva, y un par neutrino-antineutrino. Se trata de un ‘modo dorado’ para buscar procesos físicos desconocidos. Por otra parte, observado el entrelazamiento cuántico en el CERN a la mayor energía lograda hasta ahora. Los experimentos ATLAS y CMS del Gran Colisionador de Hadrones (LHC) han registrado a 13 teraelectronvoltios esta asombrosa característica de la física cuántica que permite a dos partículas, quarks top en este caso, estar vinculadas a distancia. Este fenómeno es la base de aplicaciones como la criptografía y la computación cuánticas.
Descubierto un proceso ultrararo en el CERN que podría desvelar una nueva física
Enrique Sacristán
Científicos del Laboratorio Europeo de Física de Partículas (CERN, en la frontera franco-suiza cerca de Ginebra), han descubierto un proceso de desintegración de partículas muy muy raro, abriendo una nueva vía para encontrar física más allá de nuestra comprensión de cómo interactúan los componentes básicos de la materia.
La colaboración NA62 ha presentado el pasado martes en un EP seminar del CERN la primera observación experimental de la desintegración ultrarara del kaón cargado positivamente en un pión cargado también y un par neutrino-antineutrino. Con sus símbolos respectivos es K+→π+ννˉ.
Los kaones y los piones son partículas que contienen quarks. Los primeros, un quark extraño (s), y los segundos, quarks up (u) y down (d). Por su parte, los neutrinos y antineutrinos son partículas elementales de la familia de los leptones.
El modelo estándar de la física de partículas, que explica cómo interactúan estas, predice que menos de uno de cada 10.000 millones de kaones se desintegrará de este modo. En concreto, un poco más de 8 veces cada 100.000 millones (hay 2 cálculos teóricos principales que dan valores de 8,60 y 7,86). El experimento NA62 se ha diseñado y construido específicamente para medir esta desintegración de kaones.
Descubrimiento con confianza estadística
“Con esta nueva medida, K+→π+ννˉ se convierte en la desintegración más rara establecida a nivel de descubrimiento: la famosa 5 sigma, con un difícil análisis resultado de un excelente trabajo en equipo”, destaca una de las autoras, Cristina Lazzeroni, profesora de Física de Partículas de la Universidad de Birmingham (Reino Unido).
Lazzeroni explica: “En física de partículas, 5 sigma tiene un significado especial. Es el umbral para un descubrimiento o primera observación. En la práctica, tiene que ver con lo seguros que estamos de que lo que vemos es realmente una señal de esta desintegración en particular. Además, la nueva medición es sustancialmente más precisa que la anterior (la incertidumbre fraccional pasa del 40 al 25 %)”.
“Esta desintegración en particular está muy bien predicha en el modelo estándar, pero se trata de algo realmente infrecuente en procesos en los que intervienen quarks, como este”, insiste la profesora.
Una desintegración ‘de oro’
“Por este motivo —añade—, esta desintegración recibe el nombre de golden mode (modo o canal dorado o de oro). Es sensible a una gran variedad de modelos teóricos que predicen la existencia de nueva física más allá del modelo estándar. Por lo tanto, si medimos una desviación de él, es una clara señal de nueva física”.
Los investigadores contemplan esa posibilidad, ya que el experimento NA62 seguirá recogiendo datos hasta la parada o Long-Shutdown-3 prevista para 2026. “Así que acumularemos tantos datos como los que tenemos ahora, y con todos ellos podremos determinar con cierta precisión si hay desviación o no”, adelanta Lazzeroni.
De momento se ha medido que la fracción de kaones que se desintegran en un pión y dos neutrinos es de aproximadamente 13 entre 100.000 millones. Esto coincide con las predicciones del modelo, pero es aproximadamente un 50 % superior.
Kaones producidos con protones
Los kaones son producidos por un haz de protones de alta intensidad proporcionado por el Super Proton Synchrotron (SPS) del CERN, que colisiona con un blanco estacionario. Esto crea un haz de partículas secundarias con casi mil millones por segundo que vuelan hacia el detector NA62, de las cuales aproximadamente el 6 % son kaones cargados.
Este detector identifica y mide con precisión cada kaón y sus productos de desintegración, excepto los neutrinos, que aparecen como energía desaparecida.
El nuevo resultado se basa en la combinación de los datos tomados por el experimento NA62 entre 2021 y 2022 y un estudio anterior con registros de 2016-18. Los investigadores siguen recopilando nuevos datos para en los próximos años confirmar o descartar la presencia de nueva física.
Fuente: agencia SINC.
▪️◾▪️
Observado el entrelazamiento cuántico en el CERN a la mayor energía lograda hasta ahora
Agencias
El entrelazamiento cuántico es una característica fascinante de la física cuántica, la teoría de lo muy pequeño. Si dos partículas están entrelazadas cuánticamente, el estado de una de ellas está ligado al de la otra, independientemente de la distancia que las separe.
Este asombroso fenómeno, que no tiene análogos en la física clásica, se ha observado en una amplia variedad de sistemas y ha encontrado aplicaciones importantes, como la criptografía cuántica y la computación cuántica.
En 2022, el Premio Nobel de Física fue otorgado a Alain Aspect, John F. Clauser y Anton Zeilinger por sus experimentos pioneros con fotones entrelazados. Estos experimentos confirmaron las predicciones sobre la manifestación del entrelazamiento hechas por el físico teórico John Bell, y dieron origen a la ciencia de la información cuántica.
Hasta ahora, el entrelazamiento ha permanecido en gran medida inexplorado a altas energías, accesibles únicamente en grandes colisionadores de partículas como el Gran Colisionador de Hadrones (LHC) del Laboratorio Europeo de Física de Partículas (CERN), en la frontera franco-suiza cerca de Ginebra.
Confirmado por dos experimentos del LHC
En un artículo publicado en Nature, la colaboración ATLAS informa cómo logró observar el entrelazamiento cuántico en el LHC por primera vez entre partículas elementales llamadas quarks top y a la mayor energía alcanzada hasta ahora: 13 teraelectronvoltios (TeV).
Observado por primera vez por ATLAS en septiembre de 2023 y posteriormente confirmado por primera y segunda observaciones independientes realizadas por la colaboración CMS, este resultado ha abierto una nueva perspectiva en el complejo mundo de la física cuántica.
“Si bien la física de partículas está profundamente arraigada en la mecánica cuántica, la observación del entrelazamiento cuántico en un nuevo sistema de partículas y a una energía mucho mayor de lo que era posible es un hito notable”, destaca Andreas Hoecker, portavoz de ATLAS.
“Abre el camino a nuevas investigaciones sobre este fascinante fenómeno, ofreciendo un rico menú de exploración a medida que nuestro volumen de datos continúa creciendo”, añade.
Entrelazamiento entre quark y antiquark top
Los equipos de ATLAS y CMS observaron el entrelazamiento cuántico entre un quark top y un antiquark top, su antipartícula. Las observaciones se basan en un método propuesto recientemente para utilizar pares de quarks top producidos en el LHC como un nuevo sistema para estudiar el entrelazamiento.
El quark top es la partícula elemental más pesada que se conoce. Normalmente, se desintegra en otras partículas antes de que tenga tiempo de combinarse con otros quarks, transfiriendo sus propiedades a las partículas a las que se desintegra. Es precisamente una de esas propiedades, el espín, la que permite estudiar el entrelazamiento entre dos partículas.
Para observar el entrelazamiento entre quarks top, las colaboraciones de ATLAS y CMS seleccionaron pares de quarks top a partir de datos de colisiones protón-protón que tuvieron lugar durante el segundo periodo de toma de datos del LHC, llamado Run2, entre 2015 y 2018.
Los equipos de ATLAS y CMS observaron entrelazamiento del espín entre quarks top con una certidumbre superior a cinco sigma o desviaciones estándar (una forma de tener significancia estadística).
En un segundo estudio, la colaboración CMS también buscó pares de quarks top producidos en condiciones donde, para una gran fracción de estas parejas, se predice que las posiciones relativas y los tiempos de sus desintegraciones son tales que se excluye el intercambio clásico de información entre partículas, y CMS observó entrelazamiento de espín entre los quarks top también en este caso.
“Con las medidas del entrelazamiento y otros conceptos cuánticos en un nuevo sistema de partículas y en un rango de energía más allá de lo que era accesible anteriormente, podemos poner a prueba el modelo estándar de la física de partículas de formas novedosas y buscar señales de nueva física que pueda haber más allá», apunta la portavoz de CMS Patricia McBride.
En el avance ha participado el Instituto de Física Corpuscular (IFIC), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de Valencia (UV). En concreto, dos investigadores del CSIC en el IFIC, Carlos Escobar y Marcel Vos, han participado en el proceso de revisión de todos los aspectos del análisis que ahora publica Nature.
“Como es normal con un resultado rompedor, ha sido un proceso de revisión intenso, tanto dentro de la colaboración como con la revista. Después de tres años de trabajo, estamos muy contentos de ver este resultado publicado en esta revista”, comenta Escobar.
Por su parte, Vos, añade: “Esta medida de ATLAS y la confirmación de CMS marcan el inicio de una nueva forma de estudiar los fundamentos de la mecánica cuántica. Hay muchas ideas nuevas explorando el potencial del LHC para aclarar la interpretación de la física cuántica”.