Ilustración: Johan Jarnestad / The Royal Swedish Academy of Sciences.

Charpentier y Doudna: reescribiendo la historia… y el ‘código de la vida’

Dos reflexiones sobre Nobel de Química 2020…

Los científicos y catedráticos Carmen Fenoll Comes y Juan Ignacio Pérez Iglesias nos hablan, respectivamente, de las bioquímicas Jennifer Doudna y Emmanuelle Charpentier: ambas galardonadas con el Nobel de Química 2020. El motivo del galardón —nos cuenta Juan Ignacio— es por haber desarrollado una técnica (basada en el sistema denominado CRISPR/Cas) que es considerada hoy por la comunidad científica como una innovación trascendental en el campo de la genética molecular y de sus aplicaciones. Así que esta es la historia —nos cuenta por su parte Carmen Fenoll— de cómo dos investigadoras se encuentran en un congreso, hablan, se entienden, se ponen a trabajar juntas… y cambian el mundo. (Por cierto, y es importante señalarlo de nuevo: por primera vez en la historia, dos mujeres comparten de manera exclusiva un premio Nobel de ciencias.)


El Nobel de Química 2020 deja una imagen inédita

Carmen Fenoll Comes

Desde hace ya bastantes años son muy raros los premios Nobel de ciencias en solitario. La mayoría de ellos son compartidos por dos o tres personas, en casi todos los casos hombres y muy de vez en cuando dos hombres y una mujer. Así que la fotografía de los premios de ciencia más importantes del mundo es esa: dos o tres varones o, alguna que otra vez, dos varones y una mujer.

El hecho de que sean varias personas las que comparten la fotografía es un reflejo de la forma en la que se hace la ciencia en la actualidad: la colaboración. Pero esas fotografías que se publicaban año tras año no reflejaban otra realidad que este 2020 sí podemos ver en el galardón de química: una enorme cantidad de los grupos que hacen ciencia están integrados y liderados por científicas.

Miles de investigadoras de todos los países del mundo colaboran entre ellas para que avance el conocimiento. Pero eso no lo hemos visto en las fotografías de los Nobel hasta que este 2020 Charpentier y Doudna han puesto cara a una realidad que la Real Academia de Ciencias de Suecia ha tardado en ver.

La microbióloga precaria y revolucionaria

Emmanuelle Charpentier (Juvisy-sur-Orge, Francia, 1968), microbióloga de formación, fue quien empezó con el trabajo que les ha llevado hasta el Nobel. Fue una investigadora en precario que tardó muchos años en tener un laboratorio propio pero no se dio por vencida. Tras dos becas posdoctorales en Nueva York, ambas bajo la dirección de dos investigadoras, volvió a Europa y recaló en Viena a principios de los 2000. Allí se empezó a interesar por CRISPR.

Tenía una idea revolucionaria y casi herética para la ciencia convencional sobre cómo podría funcionar este sistema. Para demostrarlo necesitaba que alguno de sus estudiantes de doctorado realizara ciertos experimentos porque ella no tenía ayudantes de laboratorio. Pero sus doctorandos no aceptaron entrar en el camino que les mostraba Charpentier, que sólo logró que una de sus estudiantes de máster los realizara.

Poco después dejó su puesto en Viena y se trasladó a Umea (Suecia) y en 2011 publica en la prestigiosa revista Nature un artículo revolucionario que demostraba cómo dos moléculas de RNA interaccionaban para hacer funcionar el sistema antiviral de las bacterias. La primera firmante era la humilde estudiante de máster.

Puerto Rico las unió

Ese mismo año conoció en un Congreso en Puerto Rico a Jennifer Doudna (Washington D.C., Estados Unidos, 1964), reputada bióloga estructural que trabaja precisamente con RNA. A partir de ahí empezaron a colaborar y sólo un año después publicaron juntas en Science un trabajo que va más allá de la ciencia básica y que fue el inicio de su camino hasta el Nobel: una endonucleasa programable por RNA en la inmunidad bacteriana.

En todo este trabajo la palabra clave era “programable” porque en él demostraron que se podía usar este sistema para introducir cambios muy específicos en cualquier sitio de un genoma con una elegante simplicidad. Charpentier y Doudna acordaron firmar el paper con relevancia equivalente. Les fue fácil ponerse de acuerdo. Y menos de un año después ya había cientos de laboratorios aplicando su método.

Desde entonces les han llovido los premios (en España, el Princesa de Asturias y el Fronteras de la Fundación BBVA, que nos han brindado refrescantes fotografías que, por una vez, no protagonizan chaquetas y corbatas) y continúan investigando y descubriendo cosas nuevas. Su trabajo es un gran ejemplo de cómo la curiosidad científica, sin ninguna intención de aplicación, puede terminar encontrando utilidades enormemente importantes. En esta curiosidad caben ideas locas, que muchas veces quedan en eso pero que, en otras, como en este caso las de Charpentier, sirven para descubrir lo que ocurre de verdad y abren caminos insospechados a la ciencia y a sus aplicaciones.

En realidad, toda esta historia se remonta a un español, Francisco Mojica, microbiólogo de la Universidad de Alicante que en 1993 publicó su descubrimiento de las secuencias CRISPR (sí, fue Francis Mojica quien les dio este nombre) en bacterias de las salinas de Santa Pola. También fue el primero que, en 2005, sugiere en una publicación que se trataba de un sistema inmunitario bacteriano. Aunque ambos trabajos son la base de todo, le costó muchísimo publicarlos. Nadie se lo creía, como le pasó a Charpentier con sus doctorandos.

También es un ejemplo de lo fructíferas que son las colaboraciones entre personas con diferentes especialidades o intereses científicos. Dos investigadoras se encuentran en un congreso, hablan, se entienden, se ponen a trabajar juntas… y cambian el mundo. Enhorabuena, Charpentier y Doudna.

Fuente: Agencia SINC.

§§§


Un Nobel por querer entender el mundo

Juan Ignacio Pérez Iglesias

Las bioquímicas Jennifer Doudna y Emmanuelle Charpentier han sido galardonadas con el Premio Nobel de Química. El motivo del galardón es que desarrollaron una técnica —basada en el sistema denominado CRISPR/Cas, que descubrió el español Francis Mojica en 1993— que es considerada hoy por la comunidad científica como una innovación trascendental en el campo de la genética molecular, con múltiples aplicaciones.

Doudna y Charpentier estaban interesadas en desentrañar el mecanismo que utilizan ciertos microorganismos —arqueas y algunas bacterias— para defenderse del ataque de agentes genéticos extraños, como los bacteriófagos. Estos virus infectan bacterias y utilizan su maquinaria celular para replicarse.

Emmanuelle Charpentier y Jennifer Doudna en una imagen de 2015. / Foto de Miguel Riopa.

El sistema CRISPR/Cas incorpora al propio ADN bacteriano fragmentos del ADN del agente extraño y de esa forma sirve de guía que evita futuras invasiones. Además, esa información se transmite a la siguiente generación de bacterias, lo que les confiere un modo de defensa frente a los agentes responsables de la infección original. Se trata, a todos los efectos, de un sistema que proporciona inmunidad a las bacterias, o sea, una especie de sistema inmunitario bacteriano.

Un bisturí molecular con muchas posibilidades

Doudna y Charpentier, además de desentrañar el mecanismo del sistema CRISPR/Cas, se dieron cuenta de sus posibilidades para su uso con fines biotecnológicos.

De hecho, a su técnica se la suele denominar “bisturí molecular” porque se utiliza para cortar y pegar fragmentos de genoma, o sea, para editarlo. Como señalaron en una revisión que publicó la revista Science en noviembre de 2014, el mecanismo identificado en las bacterias ha abierto unas posibilidades enormes.

Se utiliza, entre otras cosas, para analizar la función de genes en células de todo tipo de organismos, para reorganizar sus secuencias génicas introduciendo nuevos elementos de información en ellas, o para corregir mutaciones genéticas responsables del desarrollo de enfermedades graves. Ha generado también importantes expectativas en el campo de la farmacología y abre un enorme abanico de posibilidades en el desarrollo de cultivos de plantas con características de especial interés, con lo que ello significa de cara al desarrollo de nuevos cultivos agrícolas. Me refiero a plantas resistentes, por ejemplo, a enfermedades, a escasez de agua, a suelos salinos, y a otros posibles factores adversos.

Una de las primeras muestras de las posibilidades del bisturí molecular fue el nacimiento —anunciado en enero de 2014 en la revista Cell— de dos macacos cuyo genoma se había modificado para que desarrollasen el mal de alzheimer. El propósito de esa creación fue el de poder utilizar a los monos como modelos experimentales para el estudio de la enfermedad en una especie que, por tratarse de primates, es relativamente próxima a la especie humana.

Desde entonces, las aplicaciones de CRISPR han crecido año tras año e incluso se ha usado esta herramienta durante la actual pandemia de coronavirus. Su lado oscuro llegó en 2018, cuando tuvo lugar el “despropósito médico del siglo” que llevó a la edición genética de tres bebés en China saltándose los procedimientos éticos.

Los padres del ‘cortapega’ genético. De izquierda a la derecha, Emanuelle Charpentier, Jennifer Doudna y Francisco Mojica. Fundación BBVA

Neutralizar enfermedades hereditarias

Hay muchas enfermedades graves que se transmiten de forma hereditaria y que pueden ser neutralizadas editando el genoma de los embriones y “corrigiendo” de esa forma las mutaciones. Es una posibilidad fantástica. Y de la misma forma, la nueva técnica abre también la vía a la edición del genoma de embriones de diferentes especies para que los individuos resultantes tengan determinadas características.

Esas especies pueden ser mascotas, animales de granja o, incluso, seres humanos. A nadie se le escapa que la edición de genomas humanos en estado embrionario para que desarrollen determinadas características no deja de ser una forma de eugenesia, con todas las implicaciones de índole ética que ello implica.

Jennifer Doudna, al referirse a su descubrimiento, declaró: “Siempre me he centrado en la investigación básica, motivada por un deseo de entender el mundo”. Es una afirmación importante. Doudna y Charpentier no investigaron para desarrollar una técnica revolucionaria que rendiría enormes beneficios de toda índole. No. Lo hicieron para conocer el mundo.

El ánimo que las impulsaba no era aplicar los conocimientos que obtuviesen. Sólo querían entender cómo funcionan los seres vivos. En ese camino de conocimiento se encontraron con una aplicación de importancia crucial. No es la primera vez que ocurre. De hecho, quienes han hecho la mayor parte de los descubrimientos científicos que han dado lugar a los grandes desarrollos tecnológicos o de salud que se han producido en los últimos cien años no pretendían obtener esos desarrollos. Se limitaban a querer entender el mundo.

Fuente: The Conversation.

Carmen Fenoll Comes es catedrática de Fisiología Vegetal de la Universidad de Castilla La Mancha, presidenta de la Sociedad Española de Fisiología Vegetal y presidenta de AMIT.

Juan Ignacio Pérez Iglesias es biólogo, catedrático de Fisiología en la Universidad del País Vasco. La versión original fue publicada en el blog Mujeres con ciencia.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *