Ciencia

Marte y Neptuno: las sorprendentes imágenes registradas por el James Webb

Septiembre, 2022

El telescopio espacial James Webb sigue enviando imágenes que amplían lo conocido sobre nuestro Sistema Solar. Esta vez le ha tocado el turno al planeta rojo, y también hay nuevas imágenes del gigante helado. De ello nos habla Óscar del Barco Novillo.

Lo que las nuevas imágenes del telescopio espacial James Webb nos enseñan sobre el planeta Marte

El telescopio espacial James Webb nos vuelve a sorprender con unas nuevas imágenes de un planeta del Sistema Solar. Esta vez le ha tocado el turno a nuestro vecino: Marte.

Si bien estas no son tan espectaculares como las de los gigantes gaseosos Júpiter y Neptuno, es cierto que proporcionan bastante información sobre el relieve del planeta rojo y las diferencias de temperatura en su superficie.

Además, el James Webb también ha obtenido el espectro del planeta: una curva característica que permite estudiar, entre otros aspectos, la composición química de la atmósfera marciana.

Estructura y relieve del planeta Marte

Se le denomina “el planeta rojo” por su clara tonalidad rojiza (distinguible a simple vista) debido a la gran cantidad de óxido de hierro presente en su superficie. Su nombre está asociado a Marte, el dios de la guerra romano.

Es el segundo planeta más pequeño del Sistema Solar, sólo por detrás de Mercurio. Con un período de rotación similar al terrestre (unas 24 horas y 39 minutos), Marte tarda unos 23 meses en completar una vuelta alrededor del Sol.

Debido a su pequeña masa en comparación con la Tierra, la gravedad marciana es unas 2,6 veces menor que la de nuestro planeta: si usted consigue saltar hasta una altura de medio metro en la Tierra, alcanzaría los 1,2 metros en Marte.

Siendo el planeta interior menos denso, Marte es de composición rocosa y está estructurado en diferentes capas: un denso núcleo metálico (formado principalmente por níquel y hierro), un manto de silicatos que lo rodea y una corteza externa de unos 50 kilómetros de espesor. Los elementos más abundantes de esta última capa son el oxígeno, el silicio y el hierro, entre otros.

Algunas características del relieve marciano son únicas en nuestro Sistema Solar. El Monte Olimpo, de 22,5 kilómetros de altitud y con una extensión que abarca gran parte de Francia continental, deja en casi insignificante a nuestro monte Everest.

Marte también posee grandes extensiones de terreno rocoso formadas por colinas de menor elevación. En la imagen inferior podemos apreciar dichas agrupaciones de rocas y colinas (el llamado afloramiento Matusalén) tomadas por el robot explorador Spirit en 2005.

Imagen en falso color de la agrupación rocosa Matusalén del planeta Marte (tomada por el robot Spirit en 2005). NASA.

Se trata de una imagen en falso color para una mejor interpretación visual del relieve marciano, a partir de tres filtros de diferentes colores (rojo, verde y violeta), que llevaba incorporada la cámara del Spirit.

Cabe destacar la cuenca de Hellas: una llanura de unos 2300 kilómetros de diámetro en el hemisferio sur del planeta formada tras el impacto de un meteorito. El cráter resultante es el más grande, pues alcanza una profundidad máxima de unos 6 kilómetros.

Por otro lado, Marte posee el sistema de cañones más largo del Sistema Solar: el Valles Marineris. Esta gigantesca depresión alcanza una longitud de unos 4800 kilómetros (prácticamente la distancia entre California y Nueva York) y 11 kilómetros de profundidad. En comparación, es diez veces más largo que el Gran Cañón de Arizona.

Se cree que Marte pudo contener agua líquida en su superficie hace millones de años, formando antiguas redes fluviales y deltas. De hecho, la presencia de rocas y minerales en la superficie marciana, cuya forma fue moldeada por la acción de agua líquida, sustentan dicha afirmación.

Hielo seco y agua congelada en los casquetes polares

Nuestro planeta vecino presenta dos casquetes de hielo permanente en sus polos. Cuando hablamos de hielo nos referimos tanto al hielo seco (formado por dióxido de carbono) como al hielo de agua.

El único lugar del planeta donde el agua congelada es visible en su superficie es el casquete polar norte. En cambio, en el polo sur marciano, el agua en estado sólido está localizada debajo de una capa de dióxido de carbono congelado.

Una atmósfera delgada formada principalmente por dióxido de carbono

El planeta rojo posee una atmósfera muy delgada y poco densa formada principalmente por dióxido de carbono (95 %), nitrógeno y argón.

Si usted se encontrara en la superficie de este planeta y mirara hacia el cielo marciano, su aspecto sería borroso y con un tono rojizo (debido a las altas concentraciones de polvo en suspensión): perderíamos el encantador tono azulado de nuestra atmósfera.

La presión atmosférica en Marte es unas cien veces menor que la terrestre. Esta peculiaridad tiene, entre otras, dos consecuencias importantes:

⠀⠀1. No existen grandes cantidades de agua líquida en la superficie del planeta. Esto se debe al valor tan bajo de la presión atmosférica, que haría que el agua líquida sufriera una rápida evaporación (o congelación).

⠀⠀2. El sonido en el planeta rojo sería muy diferente al que percibiríamos en la Tierra.

Características como la velocidad del sonido (casi 1,4 veces menor que en nuestro planeta), el volumen (con un nivel de sonido menor en Marte) y la calidad del sonido (favoreciendo los tonos bajos, ya que las altas tonalidades son prácticamente absorbidas debido a la alta concentración de CO₂ de la atmósfera marciana) serían muy diferentes a las de nuestro planeta.

La NASA, por ejemplo, ha recreado diferentes sonidos, tanto en Marte como en la Tierra: puede escucharse en este enlace.

Dos satélites naturales orbitan el planeta rojo

En comparación con el gran número de satélites que poseen los planetas gigantes Júpiter y Saturno, Marte tiene exclusivamente dos pequeños satélites naturales denominados Fobos y Deimos.

⠀⠀• Fobos es el mayor de los dos y el más cercano al planeta. Su forma es irregular, con un tamaño medio de unos 22 kilómetros, y siempre presenta la misma cara a Marte (similar a nuestra Luna orbitando alrededor de la Tierra, debido a un efecto llamado acoplamiento de marea o rotación síncrona).

⠀⠀• Deimos es el satélite natural más pequeño de todo el Sistema Solar. Con un tamaño medio de unos 12 kilómetros, orbita el planeta rojo a una distancia mayor que Fobos (también en rotación síncrona) en unas 30 horas.

Las nuevas imágenes de Marte del James Webb

Volviendo a las nuevas imágenes de Marte proporcionadas por el James Webb, cabe recordar que este telescopio espacial opera en el rango del infrarrojo.

Esto quiere decir que los colores mostrados en las siguientes instantáneas no son reales: cada tonalidad representa zonas de Marte donde la luz solar es reflejada en mayor o menor grado, o regiones del planeta más cálidas o más frías.

Primeras imágenes de Marte registradas por el instrumento NIRcam del telescopio James Webb. NASA.

Así, por ejemplo, la imagen superior izquierda fue registrada por el instrumento NIRcam del Webb para una longitud de onda infrarroja de 2,1 micras (las longitudes de onda que el ojo humano puede detectar abarcan desde las 0,38 micras del color violeta hasta las 0,75 micras del color rojo).

Cabe señalar que esta instantánea contiene gran cantidad de luz solar reflejada por el planeta rojo. Por este motivo, se pueden distinguir detalles del relieve marciano como el cráter Huygens, el volcán Syrtis Major y la cuenca de Hellas de forma similar a una imagen en el visible (es decir, en color real).

Por otro lado, la imagen superior derecha muestra la radiación infrarroja emitida por Marte en una longitud de onda de 4,3 micras. Los colores cálidos representan zonas del planeta a mayor temperatura (como, por ejemplo, la región que rodea a la cuenca de Hellas), mientras que los tonos violetas están relacionados con zonas más frías (como en las regiones polares, donde incide menor cantidad de radiación solar).

Son notables las diferencias de temperatura con la latitud del lugar, así como el oscurecimiento de la cuenca de Hellas causado por los efectos atmosféricos.

¿A qué se debe el gran área amarilla rodeando al punto subsolar de Marte, es decir, la región que recibe mayor cantidad de radiación solar? La explicación está en la enorme sensibilidad de los instrumentos del James Webb (diseñado originalmente para detectar señales débiles en el infrarrojo procedentes de objetos lejanos).

Al encontrarse Marte tan cerca del telescopio, la brillante luz infrarroja del planeta provoca un efecto cegador en los instrumentos del James Webb: este efecto se denomina saturación del detector.

Precisamente, este gran área amarilla está justo en el límite de saturación del detector, impidiendo al telescopio registrar valores mayores de la radiación infrarroja procedente de Marte.

El espectro nos informa sobre la atmósfera marciana

El telescopio James Webb no sólo es capaz de registrar imágenes en el infrarrojo para determinadas longitudes de onda, tal como en las instantáneas anteriores: también puede obtener valores de la radiación en un rango de longitudes de onda (el denominado espectro). El instrumento del James Webb encargado de dicha tarea es el NIRSpec.

Espectro en infrarrojo del planeta Marte (registrado por el instrumento NIRSpec del telescopio James Webb). NASA.

De esta forma, el gráfico de la figura superior representa la radiación infrarroja reflejada y emitida por el planeta Marte, frente a las longitudes de onda del infrarrojo en las que opera el instrumento NIRSpec (eje horizontal, desde 1 hasta 5 micras).

Es notorio que, para unas longitudes de onda específicas, la curva sufre unas determinadas caídas espectrales: esto es debido a que la luz infrarroja es absorbida por moléculas en la atmósfera de Marte, específicamente dióxido de carbono, monóxido de carbono y vapor de agua.

En otras palabras, estas curvas espectrales nos permiten identificar los compuestos químicos presentes en la atmósfera marciana (y de cualquier otro planeta cuya señal en infrarrojo pueda detectar el James Webb).

Implicaciones futuras de estos nuevos resultados sobre Marte

Estos prometedores resultados sobre el espectro de Marte serán de gran utilidad a la hora de buscar trazas de otros gases menos abundantes en la atmósfera marciana (como, por ejemplo, el metano o el cloruro de hidrógeno).

Además, y dada su privilegiada ubicación, el James Webb podrá estudiar diferentes fenómenos como tormentas de polvo o determinados patrones climáticos en el planeta rojo. Se espera una estrecha colaboración entre este telescopio y las diferentes misiones desplegadas en Marte.

▪️◾▪️

Las sorprendentes imágenes del planeta Neptuno registradas por el telescopio espacial James Webb

Unos días después de mostrarnos las nuevas imágenes en el infrarrojo del planeta Marte, el telescopio espacial James Webb nos vuelve a sorprender con unas extraordinarias instantáneas. Esta vez le toca el turno a Neptuno.

Este planeta helado debe su nombre al dios romano del mar por el intenso color azul con el que es observado en luz visible. La razón de dicho tono azulado es la presencia de metano en su atmósfera. Este compuesto químico absorbe gran cantidad de luz roja procedente del Sol, y es el color azul el que es mayoritariamente reflejado por el planeta.

Desde mediados del siglo XIX los astrónomos sospechaban de la existencia de un planeta más alejado que Urano, debido a que la órbita de este último era perturbada por un astro masivo aún no descubierto mediante observaciones astronómicas.

Fue el 23 de septiembre de 1846 cuando el astrónomo alemán J. G. Galle encontró a Neptuno en la posición exacta donde el matemático francés Le Verrier había predicho mediante cálculos matemáticos.

Tres imágenes del planeta Neptuno capturadas por dos telescopios espaciales (Hubble y James Webb) y la sonda espacial Voyager 2. NASA

En la imagen superior se muestran, a modo comparativo, tres imágenes de este bello gigante helado registradas por dos telescopios espaciales (el Hubble y el James Webb) y la sonda espacial Voyager 2 (esta última, después de un viaje de 12 años hasta el planeta azul).

Cabe mencionar que la imagen de Neptuno tomada por el James Webb no es azulada debido a que este telescopio capta la radiación infrarroja emitida por dicho planeta.

Algunos datos sobre Neptuno

Se trata del octavo planeta en orden creciente de distancia respecto al Sol: la luz solar tarda unas 4 horas en alcanzar este gigante helado, encontrándose 30 veces más alejado del Sol de lo que lo está la Tierra.

Aunque nos llame la atención su color azulado, este planeta recibe muy poca cantidad de radiación solar, por lo que es relativamente oscuro: el mediodía en Neptuno sería equivalente a un tenue atardecer en nuestro planeta.

Con una masa 17 veces la terrestre y un volumen de casi 58 tierras, su densidad media es 3,4 veces menor que la de nuestro planeta (similar a la del azúcar de mesa). Este dato hace referencia al carácter no rocoso del gigante helado.

Un día en Neptuno tiene una duración de unas 16 horas, debido su alta velocidad de rotación. Sin embargo, el planeta azul describe una órbita alrededor del Sol en unos 165 años terrestres: esto quiere decir que Neptuno sólo ha completado una revolución en torno al Sol desde que fue descubierto en 1846.

Una atmósfera turbulenta que contiene nubes de metano

La atmósfera neptuniana está compuesta principalmente por hidrógeno (84 %), helio (12 %) y metano (2 %), además de otros compuestos como el amoníaco. Presenta una estructura de bandas similar a la de Júpiter o Saturno.

Se divide en dos regiones fundamentales: la troposfera (o región interior, donde la temperatura disminuye con la altura) y la estratosfera (la región superior, con un comportamiento térmico opuesto al anterior).

La atmósfera del planeta azul es muy activa y turbulenta: se han registrado huracanes gigantes (con una extensión similar a la Tierra) y vientos supersónicos de metano. Sus velocidades alcanzan hasta 2 000 kilómetros por hora y son los más intensos de todo el Sistema Solar.

Neptuno. NASA, ESA, CSA, STScI

También posee un sistema de anillos

Al igual que otros planetas exteriores del Sistema Solar, el gigante azul también dispone de un sistema de anillos. Formados principalmente por partículas de hielo y silicatos, su color es muy oscuro y son difíciles observar.

Los cinco principales anillos reciben el nombre de los astrónomos más relevantes en el estudio de este planeta: del más exterior al más interior se denominan el anillo Adams, Arago, Lassell, Le Verrier y Galle.

Fue precisamente la sonda espacial Voyager 2 la que demostró la existencia de los anillos neptunianos cuando pasó cerca del gigante helado en el año 1989.

Sus satélites naturales

Hasta la fecha se conocen 14 satélites de Neptuno. Tritón es el de mayor tamaño con diferencia.

Descubierto tan solo 17 días después que Neptuno por el astrónomo aficionado William Lassel, Tritón es uno de los cuerpos más fríos del Sistema Solar (su temperatura media superficial es de unos 235 grados centígrados bajo cero).

Formado por una corteza de nitrógeno congelado sobre un manto de hielo, Tritón es el único gran satélite cuya órbita es retrógrada: esto quiere decir que su sentido de giro alrededor de Neptuno es opuesto a la rotación del planeta.

Otros satélites interiores (cuyas órbitas son prácticamente circulares y fotografiados por el telescopio espacial James Webb) son Náyade, Talasa, Despina, Galatea, Larisa y Proteo.

Las nuevas imágenes en el infrarrojo de este mundo helado

Tal como comentamos anteriormente, el James Webb opera en el rango del infrarrojo, con lo cual, no puede reproducir el típico color azulado del planeta.

Analizando en detalle la imagen superior, podemos distinguir las siguientes características de Neptuno:

⠀⠀1. Las nubes de hielo de metano a gran altura: se muestran como las rayas y puntos brillantes. Estas nubes reflejan fuertemente la luz solar antes de que la radiación infrarroja sea absorbida por el gas metano.

⠀⠀2. La circulación atmosférica que genera los vientos y las tormentas en Neptuno: se puede apreciar una tenue y delgada línea brillante rodeando el ecuador del planeta. En esta región a mayor temperatura, la atmósfera neptuniana emite más radiación infrarroja que los gases atmosféricos circundantes más fríos.

⠀⠀3. Las bandas de nubes altas alrededor del polo norte neptuniano: mostradas en un tono azulado, ocupan una extensa región en las zonas más septentrionales del planeta.

⠀⠀4. Los anillos de Neptuno: se trata quizás de la característica más llamativa (y posiblemente la más bella) de las nuevas imágenes del James Webb. Además de varios anillos de distinto brillo y tamaño, pueden diferenciarse claramente las bandas de polvo más débiles del gigante helado.

Por otro lado, el James Webb también capturó siete de las 14 lunas conocidas de Neptuno: Náyade, Talasa, Despina, Galatea, Larisa y Proteo.

¿Y el punto de luz brillante en forma de estrella de ocho puntas? No se trata de una estrella sino del satélite neptuniano Tritón, el de mayor tamaño, que refleja intensamente la luz solar. La forma estrellada es debida a la difracción del espejo primario del James Webb.

Captura del planeta Neptuno y siete de sus satélites fotografiada por el telescopio espacial James Webb. NASA, ESA, CSA, STScl.

Importancia de estas nuevas imágenes

Estas espectaculares instantáneas ponen otra vez de manifiesto la gran capacidad del James Webb para registrar imágenes en el rango del infrarrojo. En el caso del planeta Neptuno los anillos más tenues habían permanecido prácticamente ocultos durante más 30 años (cuando la sonda espacial Voyager 2 se aproximó a este gigante helado).

No olvidemos que el principal cometido del telescopio espacial James Webb es, entre otros, el estudio de las galaxias más lejanas y primitivas en el universo, así como la investigación de las atmósferas de planetas extrasolares.

Sin embargo, no podemos dejar de sorprendernos y admirar estas nuevas imágenes de Neptuno que nos proporcionan una nueva forma de mirar a este hermoso gigante helado.

[Oscar del Barco Novillo: profesor asociado en el área de Óptica, Universidad de Murcia. / / Fuente: The Conversation. Texto reproducido bajo la licencia Creative Commons.]

Related Articles

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Back to top button